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SEVERAL INTEGRAL CONDITIONS OF OSCILLATION FOR
THIRD ORDER LINEAR DIFFERENTIAL EQUATION

JITENDRA KUMAR PATI, DHIRENDRA KUMAR DALAI

Abstract. A generalized oscillation criteria for the equation y
′′′

+ p(t)y
′
+

q(t)y = 0 with p(t) ≤ 0, q(t) ≥ 0 and p′(t)− q(t) > 0 where t∈I, I = (a,∞) ⊂
(0,∞) is established. At the end, proof of the original Theorem (1.3) by

Lazer [10] on oscillation has been revisited taking into account various type of

substitutions.

1. Introduction

Consider the differential equation

y
′′′

+ p(t)y
′
+ q(t)y = 0 (1.1)

where p, q, p′ is a mapping from I → R, I = (a,∞) ⊂ (0,∞), R = (−∞,∞), are
continuous.
Let us take two cases

p(t) ≤ 0, q(t) > 0, t∈I (1.2)
and

p(t) ≤ 0, p′(t)− q(t) > 0, t∈I (1.3)
We consider only nontrivial solution of (1.1). Such a solution is called oscillatory
on I if it has arbitrarily large zeros, otherwise it is called non oscillatory on I.

Equation (1.1)is said to be oscillatory on I if it has atleast one oscillatory solu-
tion.

Consider the differential equation

y
′′′

+ p(t)y
′
+ q(t)y = 0 (1.4)

where p, q, p′ is a mapping from I → R, I = (a,∞) ⊂ (0,∞), R = (−∞,∞), are
continuous.
Let us take two cases

p(t) ≤ 0, q(t) > 0, t∈I (1.5)
and

p(t) ≤ 0, p′(t)− q(t) > 0, t∈I (1.6)
We consider only nontrivial solution of (1.1).

Such a solution is called oscillatory on I if it has arbitrarily large zeros, otherwise
it is called non oscillatory on I. Equation (1.1)is said to be oscillatory on I if it
has atleast one oscillatory solution.

2000 Mathematics Subject Classification. 34C10,34C15.
Key words and phrases. Oscillation; non-oscillation; third order differential equations, Integral

conditions for oscillation.

FIN
AL

www.ijreat.org

                                                                                                              91



IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 2, Issue 6, Dec-Jan, 2015
ISSN: 2320 – 8791 (Impact Factor: 1.479)   
www.ijreat.org

        www.ijreat.org
        Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org)

Equation(1,1)is said to be of class I on I if and only if every solution y of (1.1)
with y(c) = y′(c) = 0, y′′(c) > 0, c∈[a,∞], has the property that y(t) > 0 in (a,c) ,
in (c,∞).

Equation(1,1)is said to be of class II on I if and only if every solution y of (1.1)
with y(c) = y′(c) = 0, y′′(c) > 0, c∈[a,∞], has the property that y(t) > 0 in (c,∞).

2. Some useful assertions

The following assertions are helpful in deriving the structure of solutions of
equation(1.1). The proofs of these assertions may be omitted since they are similar
to proofs in the references.

It may be noted that if y is a solution of equation (1.1) then −y is also the so-
lution of this equation.So concerning non oscillatory solutions of (1.1), we restrict
our attention only to positive ones.

lem2.1 Lemma 2.1. Let (1.2) hold and y be a nontrivial non oscillatory solution of (1.1).
Then there exist b ≥ a such that

y(t)y′(t) < 0 (2.1)

or
y(t)y′(t) ≥ 0, y(t) 6= 0 (2.2)

for every t ≥ b. Further more , some positive solution y of type (2.1)satisfies
y(t) > 0, y′(t) < 0 , y′′(t) > 0 , y′′′(t) < 0 for all t ≥ a and

lim
t→∞

y
′
(t) = lim

t→∞
y
′′
(t) = 0, lim

t→∞
y(t) = k 6= ±∞ (2.3)

Proof. Follow [10; Lemma1.1 ,Lemma 1.3 ,Theorem 1.1 ],[5; Lemma 2.2].

�

lem2.2 Lemma 2.2. Let (1.2) hold. Then there exist a positive solution y of (1.1) with
property (2.1)

Proof. Follow [10 ; Theorem 1.1]. �

thm2.1 Theorem 2.3. Let (1.2)hold. A necessary and sufficient condition for (1.1) to
be oscillatory is that for any non trivial non oscillatory solution y, the condi-
tion(2.1)hold.

Proof. Follow [10; Theorem 1.2]. �

thm2.2 Theorem 2.4. Let (1.2)hold and equation (1.1) be oscillatory. Then any non os-
cillatory solution y satisfies

lim
t→∞

y(t) = 0

Proof. Follow [8]. �

thm2.3 Theorem 2.5. Let the equation is

y
′′′

+ a(t)y
′′

+ b(t)y
′
+ c(t)y = 0 (2.4)

where

a ∈ C2([σ,∞), R), b ∈ C1([σ,∞), R), c ∈ C([σ,∞), R), σ ∈ R.
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The equation is oscillatory if and only if all the non oscillatory solution of the
second order differential equation

z
′′

+ 3zz
′
+ a(t)z

′
+ z3 + a(t)z2 + b(t)z + c(t) = 0 (2.5)

are eventually negative.

Proof. Suppose that all non oscillatory solution of (2.5) are eventually negative.
We have to show that the given equation (2.4) admits an oscillatory solution.

If possible let all solutions of (2.4) be non oscillatory.
So there exist at least one non oscillatory solution u(t) of (2.4) which does not

satisfy the condition u(t)u′(t) < 0. Without any loss of generality we may take
u(t) > 0 for t > t0 ≥ σ. So it follows that u′(t) ≥ 0 for t > t1 > t0.

Now taking

z(t) =
u′(t)
u(t)

, t > t1

u′ = zu and u′′ = z′u + u′z , u′′′ = z′′u + 2z′u′+ zu′′, so equation (2.4) becomes

z′′y + 3zz′y + z2y′ + az′y + az2y + bzy + cy = 0

further it simplifies to

z′′ + 3zz′ + az′ = −(z3 + az2 + bz + c). (2.6)

So z(t) is a nonnegative non oscillatory solution of (2.5), a contradiction.
Hence (2.3) admits an oscillatory solution. Conversely suppose that (2.4)has an

oscillatory solution.
If possible let z(t)be a positive non oscillatory solution of (2.5). It may be

verified that ϑ(t) = exp(
∫ t

σ
z(s)ds) is a positive increasing solution of (2.4),which is

a contradiction.
Hence the proof is completed. �

thm2.4 Theorem 2.6. Suppose that a(t)≥0, b(t)≤0, c(t)≥0 and a
′
(t)≤0. If∫ ∞

σ

{
2a3(t)

27
− a(t)b(t)

3
+ c(t)− 2

3
√

3

(
a2(t)

3
− b(t)

)3/2}
dt = ∞ (2.7)

then (2.4) admits oscillatory solutions.

Proof. Let y(t) be a non oscillatory solution of (2.4).
so it follows that there exist a t0 ∈ [σ,∞] such thaty′(t) ≤ 0 or ≥ 0 for t ∈ [t0,∞],

It is sufficient to prove that y(t)y′(t) ≥ 0 for t ≥ t0 does not hold.
Lety(t)y′(t) ≥ 0 ,t ≥ t0.
Setting

u(t) =
y′(t)
y(t)

, t ≥ t0

we see that u(t) is a solution of the second order Riccati equation

z′′ + 3zz′ + a(t)z′ = −F (u(t), t) (2.8)

where F (u(t), t) = u3(t) + a(t)u2(t) + b(t)u(t) + c(t). It is obvious that F (u(t), t)
attains minimum value for u(t) ≥ 0 at

u(t) =
1
3

[
− a(t) +

√
(a2(t)− 3b(t))

]
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The minimum of F (u(t), t) is given by

2a3(t)
27

− a(t)b(t)
3

+ c(t)− 2
3
√

3

(
a2(t)

3
− b(t)

)3/2

So

u′′(t)+3u(t)u′(t)+a(t)u′(t) ≤ −
{

2a3(t)
27

− a(t)b(t)
3

+c(t)− 2
3
√

3

(
a2(t)

3
−b(t)

)3/2}
Integrating the above inequality from t0 to t we obtain

u′(t) ≤ u′(t0) +
3
2
u2(to) + a(t0)u(t0)−

3
2
u2(t)− a(t)u(t) +

∫ t

t0

a′(s)u(s)ds

−
∫ t

t0

{
2a3(s)

27
− a(s)b(s)

3
+ c(s)− 2

3
√

3

(
a2(s)

3
− b(s)

)3/2}
ds

≤ u′(t0) +
3
2
u2(to) + a(t0)u(t0)−

∫ t

t0

{
2a3(s)

27
− a(s)b(s)

3
+ c(s)

− 2
3
√

3

(
a2(s)

3
− b(s)

)}
ds

This in turn implies that

lim
t→∞

u
′
(t) = −∞.

This completes the Proof of the theorem. �

Definition 2.1. In particular when p(t) ≡ 0, q(t) > 0, t ∈ I, there is the well
known oscillation criteria for (1.1) of the form∫ ∞

t2−εq(t)dt = ∞

for some ε > 0.

Definition 2.2. Equation(1.1) is said to have property A if each solution y of this
equation is either oscillatory or satisfies condition (2.3).

Remark 2.1. From Theorems 2.1 to 2.4 , it follows that equation(1.1) is oscilla-
tory if and only if it has the property A.

Remark 2.2. We conclude that, in order to prove the equation (1.1) is oscillatory,
it is sufficient to prove that (1.1) does not have any non oscillatory solution of type
(2.2).

Remark 2.3. By Kneser criterion the basic condition for equation (1.1) to be
oscillatory, if t2p(t) ≤ 1

4 , t > 0.
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SEVERAL INTEGRAL CONDITIONS 5

3. Preliminaries

The aim of this paper is to establish several integral criterion for oscillation of
equation (1.1) based on the condition (1.2) and (1.3).

Earlier some paper works has been done by [17], [18] with following Remarks
and Theorems.

Remark 3.1. If 2q(t) − p′(t) ≥ 0 and not identically zero in any subinterval of I
and there exist a number m < 1

2 such that the second order differential equation
u′′ + [p(t) + mtq(t)]u = 0is oscillatory, then equation (1.1)is oscillatory.

If y is any nonzero solution of (1.1) with F [y(c)] ≤ 0(c ≥ a) then y is oscillatory,
where F [y(t)] = 2y(t)y′′(t)− (y′)2(t) + p(t)y2(t).

Remark 3.2. Let 0 ≤ t2p(t) < 1
4 and q(t) > 0.

P be the polynomial in the variable z as

p(z) = z3 − 3z2 + (2 + t2p(t))z + t3q(t), t > 0

Then

p(z) ≥ t3q(t) + t2p(t)− 2
3
√

3

[
1− t2p(t)

] 3
2

, t > 0 (3.1)

for allz ≥ 1− 2
√

1−t2p(t)
3 .

The right hand side of (3.1)is the local minimum of P at the point ’

z0 = 1 +
√

1−t2p(t)
3 .

lem3.1 Lemma 3.1. If 2q(t) − p′(t) ≥ 0 and not identically zero in any subinterval of I
and y is a non oscillatory solution of (1.1)which is eventually non negative with
F [y(c)] < 0, then there exist a number d ≥ c such thaty(t) > 0, y′(t) > 0, y′′(t) > 0
and y′′′(t) ≤ 0 for t≥d.

Remark 3.3. Any solution y with a zero, that is y(t∗) = 0, satisfies F [y(t∗)] ≤ 0 .

thm3.1 Theorem 3.2. Let hypothesis of lemma (3.1) hold and in addition t2p(t) < 1
4 for

all t > 0. If ∫ ∞{
t2q(t) + tp(t)− 2

3
√

3t

(
1− t2p(t)

) 3
2
}

dt = ∞ (3.2)

then equation (1.1)is oscillatory. In fact, any solution y which satisfies F [y(t∗)] ≤ 0
for some t∗ > a, is oscillatory.

Proof. Let y be a solution of (1.1)which satisfies F [y(t0)] ≤ 0 for some t0 > a. Then
by lemma 3.1, y is oscillatory or y(t)y′(t) > 0 for all sufficiently large t. suppose
without loss of generality that y(t) > 0, y′(t) > 0 for all t ≥ b ≥ t0.

Let

z(t) = t
y′(t)
y(t)

, t ≥ b

so z(t) > 0 with y′ = zy
t , y′′ = z′y

t + y′z
t − zy

t2 , y′′′ = yz′′

t + 2y′z′

t − 2yz′

t2 − 2y′z
t2 +

zz′y
t2 + z2y′

t2 − z2y
t3 + 2yz

t3 .
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Hence equation(1.1) becomes

yz′′

t
+

3zz′y

t2
− 2z′y

t2
− 3z2y

t3
+

z3y

t3
+

2yz

t3
+ p(t)

zy

t
+ q(t)y = 0.

So z satisfies the second order Riccati equation{
(tz)′ +

3
2
z2 − 4z

}′
+

1
t

{
z3 − 3z2 + (2 + t2p(t))z + t3q(t)

}
= 0, (3.3)

with the help of Remark 3.2 and Theorem 2.4 we may write{
(tz)′ +

3
2
z2 − 4z

}′
≤ −1

t

{
t3q(t) + t2p(t)− 2

3
√

3
(1− t2p(t))

3
2

}
= −Q(t),

for all t ≥ b.
Integrating the above inequality from b to t ≥ b we get{

tz(t)
}′

+
3
2
z2(t)− 4z(t) ≤ k0 −

∫ t

b

Q(s)ds

where ko is a constant.

Now 3
2z2(t)− 4z(t) ≥ −8

3 using z = 1− 2
√

1−t2p(t)
3 and t2p(t) ≤ 1

4 .
Integrate the above inequality from b to t ≥ b gives

tz(t) ≤ k2 + k1t−
∫ t

b

∫ s

b

Q(u)duds (3.4)

where k1 = k0 + 8
3 and k2 = b(z(b)− k1).

so it follows from (3.2) and (3.4) that z(t) < 0 for sufficiently large t, which
contradicts positivity of z.

so equation (1.1) can not have any solution with property y(t)y′(t) > 0 for all
large t.

By lemma 3.1 equation (1.1) is oscillatory.
This completes the proof of the Theorem. �

thm 3.2 Theorem 3.3. Let 0 ≤ t2p(t) < 1
4 and q(t) > 0, t ∈ I.

If (3.2) is satisfied , then any non oscillatory solution of (1.1) has property

lim
t→∞

y(t) = 0.

Proof. Follow [17; Theorem 2].
�

thm3.3 Theorem 3.4. (Extension of Theorem 3.1) Let (1.2)hold. If∫ ∞{
t2q(t) + tp(t)− 2

3
√

3t

(
1− t2p(t)

) 3
2
}

dt = ∞,

then equation(1.1) is oscillatory.

Proof. This is the extension of process as in Theorem 3.1 by taking

z = t2
y′(t
y(t)

, t ≥ b

for the completion of the theorem, follow [18,Theorem 3.3]. �
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4. Main result

In this section our main aim is to derive several integral conditions regarding
oscillation of (1.1) with an extension of conditions and suppositions of [10], [17],
[18] by different substitutions.

We have the following Theorems and assumptions which are easily followed.

lem4.1 Lemma 4.1. Let p(t) ≤ 0, q(t) > 0 hold and Q be the polynomial
in the variable z,where

Q(z) =
z3

t2n
− 3

2
n

z2

tn+1
+

(
n(n− 1)

t2
+ p(t)

)
z + q(t)tn, t > 0.

Then

Q(z) ≥ −1
4
n3t3n−3 +

1
2
n2(n− 1)t3n−3 +

1
2
np(t)t3n−1 + q(t)t3n

− 2
3
√

3
t3n−3

(
3
4
n2 − n(n− 1)− t2p(t)

) 3
2

= Q(z0), (4.1)

for all z ≥ z0 at z0 = tn−1

{
n
2 + 3−

1
2

(
n− n2

4 − t2p(t)
) 1

2
}

.

Here the right hand side of (4.1) is the local minimum of Q at the point z0.

Proof. Let

Q(z) =
z3

t2n
− 3

2
n

z2

tn+1
+

(
n(n− 1)

t2
+ p(t)

)
z + q(t)tn, t > 0.

Further let
F (u(t), t) = u3(t) + a(t)u2(t) + b(t)u(t) + c(t) (4.2)

with a view to use the concept that the equation y′′′ + a(t)y′′ + b(t)y′ + c(t)y = 0 is
oscillatory if and only if all non oscillatory solutions of the second order differential
equation, i.e, Riccati equation

z′′ + 3zz′ + a(t)z′ + z3 + a(t)z2 + b(t)z + c(t) = 0

are eventually negative. Following, u(t) = y′(t)
y(t) , t ≥ t0 is a solution of the second

order Riccati equation

z′′ + 3zz′ + a(t)z′ = −F (u(t), t),

where a(t) = − 3
2ntn−1, b(t) =

[
n(n−1)

t2 + p(t)
]
t2n, c(t) = q(t)t3n.

F (u(t), t) attains a minimum value at the point

u(t) =
1
3

[
− a +

√
a2 − 3b

]

=
1
3

{
3
2
ntn−1 +

√
9
4
n2t2n−2 − 3

[
n(n− 1)

t2
+ p(t)

]
t2n

}

= tn−1

[
n

2
+ 3

1
2

(
n− n2

4
− t2p(t)

) 1
2
]
.
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So the local minimum of Q exists at the point

z0 = tn−1

[
n

2
+ 3

1
2

(
n− n2

4
− t2p(t)

) 1
2
]
.

Now the minimum of F (u(t), t) is given by

2a3(t)
27

− a(t)b(t)
3

+ c(t)− 2
3
√

3

(
a2(t)

3
− b(t)

)3/2

. (4.3)

This becomes

−1
4
n3t3n−3 − 1

3

(
− 3

2
n2(n− 1)t3n−3 − 3

2
np(t)t3n−1

)

+q(t)t3n − 2
3
√

3

(
3
4
n2t2n−2 − n(n− 1)t2n−2 − p(t)t2n

) 3
2

,

which simplifies to

−1
4
n3t3n−3 +

1
2
n2(n− 1)t3n−3 +

1
2
np(t)t3n−1 + q(t)t3n

−t3n−3 2
3
√

3

(
3
4
n2 − n(n− 1)− t2p(t)

) 3
2

. (4.4)

Next, we show that Q(z) is an increasing function for which Q(z) ≥ Q(z0) at z0.

Q(z) =
z3

t2n
− 3

2
n

z2

tn+1
+

(
n(n− 1)

t2
+ p(t)

)
z + q(t)tn, t > 0

so

Q′(z) =
3z2

t2n
− 3zn

tn+1
+

n(n− 1)
t2

+ p(t) = 0. (4.5)

Hence
t2nQ′(z) = 3z2 − 3nztn−1 + n(n− 1)t2n−2 + p(t)t2n.

Taking A = 3, B = −3ntn−1, C = n(n− 1)t2n−2 + p(t)t2n,

the discriminant is D = B2 − 4AC = t2n−2

(
5n2 + 4n− 4t2p(t)

)
.

Q′(z) > 0 occurs when t > 0, t2n−2 > 0 and D > 0, this causes
a > 0 ,b2 − 4ac < 0 where a = 5, b = 4, c = −4t2p(t).

So 16 + 80t2p(t) < 0 implies 5t2p(t) < −1 which shows that
t2p(t) < − 1

5 < 1
4 satisfies the oscillation criteria.

As Q′(z) > 0 , so Q(z) is an increasing function. Hence Q(z) > Q(z0).
So

Q(z) ≥ −1
4
n3t3n−3 +

1
2
n2(n− 1)t3n−3 +

1
2
np(t)t3n−1 + q(t)t3n

− 2
3
√

3
t3n−3

(
3
4
n2 − n(n− 1)− t2p(t)

) 3
2

= Q(z0).

This completes the proof of the lemma. �
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thm4.1 Theorem 4.2. (Extension and generalization of Theorem 3.1 and Theorem 3.3.)
Let p(t) ≤ 0, q(t) > 0 hold. If∫ ∞{[

1
4
n3 − 1

2
n2

]
t3n−3 +

1
2
np(t)t3n−1+

q(t)t3n − 2
3
√

3
t3n−3

(
n− n2

4
− t2p(t)

) 3
2
}

dt = ∞, (4.6)

then equation (1.1) is oscillatory for n ∈ (2−
√

3, 2 +
√

3).

Proof. Let y be non oscillatory solution of (1.1). Suppose without loss of generality
that y is positive. We prove that y cannot have the property that y(t)y′(t) ≥ 0,
y(t) 6= 0 for every t ≥ b.

To prove this we assume the contrary, i.e., y(t) > 0, y′(t) ≥ 0, t ≥ b ≥ a.
Now we denote

z(t) = tn
y′(t)
y(t)

, t ≥ b.

So z(t) ≥ 0.

Now

y′ =
yz

tn
, y′′ =

zy′

tn
+

yz′

tn
− nyz

tn+1

and

y′′′ =
2z′y′

tn
+

zy′′

tn
+

yz′′

tn
− 2nzy′

tn+1
− 2nyz′

tn+1
+

n(n + 1)yz

tn+2
.

So equation (1.1) becomes

2z′y′

tn
+

z2

t2n
y′+

zz′y

t2n
− nyz2

t2n+1
+

y

tn
z′′−2nzy′

tn+1
−2nyz′

tn+1
+

n(n + 1)yz

tn+2
+p(t)

zy

tn
+q(t)y = 0.

Thus
3zz′

tn
+

z3

t2n
− 3nz2

tn+1
+ z′′ − 2nz′

t
+

n(n + 1)z
t2

+ p(t)z + q(t)tn = 0.

Hence it is easy to verify z satisfies the second order Riccati equation(
z′ +

3
2

z2

tn
− 2nz

t

)′
+

z3

t2n
− 3

2
nz2

tn+1
+

(
n(n− 1

t2
+ p(t)

)
z + q(t)tn = 0. (4.7)

By Lemma 4.1 we have(
z′ +

3
2

z2

tn
− 2nz

t

)′
≤ −

[
− 1

4
n3t3n−3 +

1
2
n2(n− 1)t3n−3

+
1
2
np(t)t3n−1 + q(t)t3n − t3n−3 2

3
√

3

(
3
4
n2 − n(n− 1)− t2p(t)

) 3
2
]

= −Q(z0)

for all t ≥ b.
Integrating the above inequality from b to t ≥ b, we get(

z′ +
3
2

z2

tn
− 2nz

t

)
≤ k0 −

∫ t

b

Q[z0(s)]ds, (4.8)

where k0 is a constant.
Now

3
2

z2

tn
− 2nz

t
=

(
t−nz(t)

)
×

(
3
2
z(t)− 2ntn−1

)
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3
2
z(t)− 2ntn−1 =

3
2
tn−1

[
n

2
− 4n

3
+
√

3

√
n− n2

4
− t2p(t)

]
.

And √
n− n2

4
− t2p(t) >

√
−1

4
+ n− n2

4
=

√
n− n2 + 1

4
,

as t2p(t) ≤ 1
4 .

So
3
2
z(t)− 2ntn−1 ≥ 3

2
tn−1

{√
3
(√

n− n2 + 1
4

)
− 5n

6

}
.

Hence (
t−nz(t)

)
×

(
3
2
z(t)− 2ntn−1

)
≥ t−1

[
n

2

+
√

3

√
n− 1

4
(n2 + 1)

]
× 3

2
tn−1

[
− 5n

6
+
√

3

√
n− n2 + 1

4

]
=

3
2
tn−2

{
− 7

6
n2 + 3n− 3

4
− n√

3

√
n− n2 + 1

4

}
.

For the sake of our convenience it may be supposed that

3
2

z2

tn
− 2nz

t
≥ 3

2
tn−2

{
− 7

6
n2 + 3n− 3

4
− n√

3

√
n− n2 + 1

4

}
In particular for n = 2, the value of the right hand side is − 5

12 ≥ −
8
3 .

So
3
2

z2

tn
− 2nz

t
≥ −8

3
with the condition n− 1

4 (n2 + 1) > 0 i.e., |n− 2| <
√

3 or 2−
√

3 < n < 2 +
√

3.
Integrating both sides of the inequality (4.8) again from b to t ≥ b, we get

z(t) ≤ k1 + k2t−
∫ t

b

∫ s

b

Q

(
z0(u)

)
duds (4.9)

where
k1 = z(b) +

8
3
b− k0b, k2 = k0 +

8
3
.

So following (4.6) and (4.9), we obtain that z < 0 for sufficiently large t.
This contradicts the fact that z is non negative. Therefore equation (1.1) can

not have any solution with the assumed property.
We get a proof of the theorem.

�

thm4.2 Theorem 4.3. Let (1.3)hold. If∫ ∞{[
1
4
n3 − 1

2
n2

]
t3n−3 +

1
2
np(t)t3n−1

+
[
p′(t)− q(t)

]
t3n − 2

3
√

3
t3n−3

[
n− n2

4
− t2p(t)

] 3
2
}

dt = ∞

then equation (1.1)is oscillatory.
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Proof. By condition(1.3) we have p′(t)− q(t) > 0,
so the equivalent equation of (1.1) under this condition is

y′′′ + p(t)y′ +
[
p′(t)− q(t)

]
y = 0. (4.10)

Now by results of Hanan [7, theorem 3.3, lemma 2.9], equation(4.10) is of classI,
so equation (1.1)is of class II.

hence, by [7;Theorem 4.7], equation(1.1)is oscillatory if and only if equation
(4.10) is oscillatory. So, applying Theorem 4.1 to equation (4.10), we obtain proof
of the theorem. �

thm4.3 Theorem 4.4. Let (1.2) hold. If∫ ∞ [
q(t)− 2

3
√

3

(
− p(t)

) 3
2
]
dt = ∞

Then equation (1.1) is oscillatory

Proof. The proof of the Theorem may be followed with an important observation.
�

Important Observation. Earlier by Lazer [10;Theorem1.3] the theorem has been
proved by using certain substitution for z.

Here we are focusing on the extension of the theorem with different substitutions
for z(t) to get the second order Riccati equation, which yields the integral condition
for oscillation of (1.1)

Proof. Let us consider the equation

y′′′ + ay′′ + by′ + cy = 0 (4.11)

compare with original equation(1.1) we have a = 0, b = p(t), c = q(t). Let y be
the solution of(4.11) and equivalently solution of (1.1) with an assumption that y
is any non oscillatory solution.

Suppose without loss of generality y is positive. We prove that y cannot have
the property (2.2). To prove this we assume the contrary i.e y(t) > 0, y′(t) ≥ 0 for
t ≥ b ≥ a.

Let we denote

z(t) = et y
′

y
So z > 0 as t > 0

By this
y′ =

yz

et

,

y′′ =
y′z

et
+

yz′

et
− yz

et

y′′′ =
y′′z

et
+

2y′z′

et
− 2yz′

et
+

yz′′

et
+

yz

et
− 2y′z

et

Hence (4.11) yields
z′′

et
+

3zz′

e2t
+

(a− 2)z′

et
=

−
{

z3

e3t
+

(a− 3)z2

e2t
+

(1− a + b)z
et

+ c

}
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Letting z
et = α, we have the above equation becomes

α′′ + 3αα′ + aα′ = −(α3 + aα2 + bα + c)

So α(t) satisfies the second order nonlinear Riccati equation. Here a = 0,b = p(t),
c = q(t) and α(t) > 0 Hence

α′′ + 3αα′ = −
(

α3 + p(t)α + q(t)
)

(4.12)

Letting

F

(
α(t), t

)
= α3 + p(t)α + q(t)

we have by (2.8), the minimum of the function F

(
α(t), t

)
is given by

2a3

27
− ab

3
+ c− 2

3
√

3
(
a2

3
− b)

3
2

which yields

q(t)− 2
3
√

3

[
− p(t)

] 3
2

So from (4.12) we obtain

d

dt

(
α′ +

3
2
α2(t)

)
≤ −q(t) +

2
3
√

3

(
− p(t)

)
3
2

(4.13)

Integrate the inequality (4.13)both sides from b to t ≥ b we have

α′(t) ≤ α′(b) +
3
2
α2(b)− 3

2
α2(t)

−
∫ t

b

[
q(t)− 2

3
√

3

(
− p(t)

) 3
2
]
dt

So
α′(t) → −∞

as t → +∞ and by given condition.
Consequently α(t) would eventually become negative, which contradicts the as-

sumption that α(t) is positive and y(t)y′(t) ≥ 0 for t ≥ b.
So (1.1) is oscillatory, since the second order Riccati equation does not admit a

non oscillatory solution that is eventually positive by referring Theorem (2.3). �

Example 4.1. Consider the differential equation

y′′′ − (1− e−t)y′ + (
2

3
√

3
+ b)y = 0, b = 0 (4.14)

Here p(t) = −(1− e−t) < 0 , q(t) = 2
3
√

3
+ b > 0.

So ∫ ∞

0

[
q(t)− 2

3
√

3

(
− p(t)

) 3
2
]
dt

=
∫ ∞

0

[
2

3
√

3
+ b− 2

3
√

3
(1− e−t)

3
2

]
dt

=
∫ ∞

0

[
2

3
√

3
+ b− 2

3
√

3

(
1 +

3
2
e−t − 3

8
e−2t +−−−

)]
dt = +∞
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So by the Theorem (4.3),
the equation has oscillatory solution.

Remark 4.1. Following the proof of the theorem 4.3,
we may observe the extension of the theorem 4.3 by more different substitutions

as follows.

thm4.4 Theorem 4.5. Let (1.1) hold.If∫ ∞ [
q(t)− 2

3
√

3

(
− p(t)

) 3
2
]
dt = ∞

Then equation (1.1) is oscillatory.

Proof. In this case only we show how the equation (1.1) will be modified to a second
order non linear Riccati equation by taking different substitutions. Remaining steps
for the proof are easily followed from Theorem (4.3).

Substitution 1. Let z(t) = e−t y′

y , obviously z > 0
With this y′ = yzet, y′′ = y′zet + yz′et + yzet, y′′′ = y′ze2t + yzz′e2t + yz2e2t +

2y′z′et + 2y′zet + yz′′et + 2yz′et + yzet

So equation(1.1)becomes

z3e3t + 3zz′e2t + 3z2e2t + z′′et + 2z′et + (1 + p)zet + q = 0

By letting zet = α we find the relation

α3 + 3αα′ + α′′ + pα + q = 0. (4.15)

Substitution 2. Let z(t) = eit y′

y obviously z > 0

By this y′ = yz
eit , y′′ = y′z

eit + yz′

eit − iyz
eit and y′′′ = z3y

e3it + 3yzz′

e2it − 3iyz2

e2it − 2iyz′

eit + yz′′

eit − yz
eit

So equation (1.1) becomes

z3

e3it
+

3zz′

e2it
− 3iz2

e2it
− 2iz′

eit
+

z′′

eit
− z

eit
+ p(t)

z

eit
+ q(t) = 0

By letting z
eit = α

we find the relation

α3 + 3αα′ + α′′ + pα + q = 0. (4.16)

Substitution 3. Let z(t) = costy′

y =
(

eit+e−it

2

)
y′

y

It is obvious z > 0
So y′ = yzsect, y′′ = y′zsect + yz′sect + yzsecttant and y′′′ = y′z2sec2t +

3yzz′sec2t + 3yz2sec2ttant + yz′′sect + 2yz′secttant + yzsec2ttant + yzsec3t
So equation(1.1) becomes

z3sec3t+3zz′sec2t+3z2sec2ttant+z′′sect+2z′secttant+zsec2ttant+zsec3t+pzsect+q = 0

By letting zsect = α we also get the relation

α3 + 3αα′ + α′′ + pα + q = 0 (4.17)

Similarly we may try for different substitutions as z = sinty′

y ,sinhty′

y ,coshty′

y etc.
After computing the relation (4.15), (4.16), (4.17) we may proceed for the proof

of the theorem 4.4 by referring the procedure of theorem 4.3. �
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thm4.5 Theorem 4.6. Let (1.3)hold.If∫ ∞ [(
p′(t)− q(t)

)
− 2

3
√

3

(
− p(t)

)
3
2

]
dt = ∞ (4.18)

Then equation(1.1)is oscillatory.

Proof. For proof follow the theorem 4.2 under the condition (1.3).
�

Remark 4.2. Let p(t) = 0 and q(t) > 0 for t∈I.
So

1
4
n3t3n−3 − 1

2
n2t3n−3 ≥ 2

3
√

3
t3n−3.

Then
n3 − 2n2

4
≥ 2

3
√

3
.

This yields

q(t)t3n ≥ 2
3
√

3
t3n−3

or
t3q(t) ≥ 2

3
√

3
>

1
3
√

3
.

So y′′′ + q(t)y = 0, q(t) > 0, is oscillatory if

liminft3q(t) >
2

3
√

3
(4.19)
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